Как поднять плотность в аккумуляторе автомобиля.

aki-motor-1

Машина в очередной раз не может завестись. Какая же причина? Нередко такое бывает при разрядке аккумулятора. Каким же образом выяснить степень его зарядки? Это определяется проверкой насыщенности электролита в батарее. Этот процесс проводится с помощью специального измерительного механизма – кислотомера. Он представляет собой стеклянную колбу с содержащимся в ней ареометром. На одном конце имеет резиновую грушу, которую используют для выкачивания электролита.

Кислотомер погружается в ячейку аккумулятора. Шкала ареометра показывает величину плотности электролита, которую сравнивают с табличными данными, разработанными специалистами. В норме насыщенность аккумулятора, в зависимости от южной или северной климатической зоны, варьирует от 1,25 до 1,29 кг на литр.

При этом различие в показаниях двух банок не должно превышать 0,01. При выявлении плотности аккумулятора ниже нормы, ее необходимо поднять. Существуют разные методы повышения плотности в зависимости от полученных значений при измерении. Если насыщенность аккумулятора составляет от 1,18 до 1,20 кг на литр, необходимо долить электролит плотностью 1,27. Вначале поднимается плотность одной банки. Грушей кислотомера откачивается как можно большая часть имеющегося электролита, а новый доливается в количестве, составляющем половину объема откачанного. Таким образом, следует довести показатель плотности до нормы. Остаток дополняется дистиллированной водой. Когда насыщенность аккумулятора составляет меньше 1,18, применяется аккумуляторная кислота, так как ее плотность больше, чем у электролита. Процедура осуществляется таким же образом, как и ранее. Но она может повторяться, и столько раз, пока плотность не поднимется до нормы.

Для повышения насыщенности аккумулятора применяют и третий способ — полностью заменяется старый электролит. Грушей откачивается по возможности наибольшее количество имеющегося электролита. Потом закручиваются заглушки исключительно от данного автоаккумулятора, иначе нарушается герметичность. На днище аккумулятора, который лежит на боковой стороне, сверлом (3-3,5) просверливаются дырочки по одной в банке. Электролит в данном случае сливается. Далее внутренняя часть аккумулятора основательно промывается дистиллированной водой. Проделанные дырочки закрываются заглушками побочного аккумулятора или кислостойкой пластмассой.

Теперь необходимо приготовить электролит, который заменит старый. Для этого в дистиллированную воду добавляется аккумуляторная кислота (не в обратном порядке!). В целях безопасности при проведении этой процедуры надевают очки и обязательно применение резиновых перчаток. Вновь изготовленный электролит должен иметь плотность больше, чем положено для данного климатического пояса. И последний момент – заливание в аккумулятор свежеприготовленного электролита.

 

Рулевое управление.

shema-rulevogo-upravleniya-1                                                                      1- шкив привода насоса; 2 — корпус насоса; 3 — бачок для масла; 4 — сетчатый фильтр; 5 и 8 — сливной и нагнетательный трубопроводы; 6 — перепускной клапан;                                                               7 — предохранительный клапан; 9 — ротор; 10— поршень-рейка; 11 — картер рулевого механизма; 12 — винт; 13 — шарики; 14 — шариковая гайка; 15 — упорный подшипник;          16 — обратный клапан; 17 — золотник; 18 — карданный вал; 19 — пружина; 20 — плунжер;  21 — сектор вала сошки; 22 — сошка; 23 — левый лонжерон рамы автомобиля; 24 — рычаги; 25 — передняя балка; 26 — регулировочный наконечник; 27 — поперечная рулевая тяга;       28 — левая поворотная цапфа; 29 — верхний рычаг поворотной цапфы; 30 — продольная рулевая тяга; А и Б — полости гидроцилиндра

НОРМАТИВНЫЕ ТРЕБОВАНИЯ К РУЛЕВОМУ УПРАВЛЕНИЮ.

Требования к элементам рулевого управления транспортных средств регламентируются Правилами ЕЭК ООН № 79. Этот документ содержит в основном конструктивные требования к данным элементам. Основные эксплуатационные требования, согласно которым и проводится проверка технического состояния рулевого управления, изложены в СТБ 1641-2006.

Суммарный люфт в рулевом управлении в регламентированных условиях испытаний не должен превышать предельных значений, установленных изготовителем в эксплуатационной документации, а при отсутствии таких данных не должен превышать:                                                                                                              — 10° для легковых автомобилей и созданных на их базе агрегатов грузовых автомобилей и автобусов                                                                                                        — 20° для автобусов                                                                                                                — 25° для грузовых автомобилей

Начало поворота управляемого колеса — это угол поворота управляемого колеса на (0,06 ± 0,01)°, измеряемый от положения прямолинейного движения.

При проверке суммарного люфта должны выдерживаться следующие предварительные условия:

— шины управляемых колес должны быть чистыми и сухими;

— управляемые колеса должны находиться в нейтральном положении на сухой ровной горизонтальной асфальто- или цементо- бетонной поверхности;

— испытания автомобилей, оборудованных усилителем рулевого привода, проводятся при работающем двигателе;

Значение суммарного люфта в рулевом управлении определяют по углу поворота рулевого колеса между двумя зафиксированными положениями начала поворота управляемых колес в результате двух или более измерений.

Натяжение ремня привода насоса усилителя рулевого управления и уровень рабочей жидкости в бачке должны соответствовать требованиям, установленным изготовителем транспортного средства в эксплуатационной документации.

При органолептической проверке рулевого управления проверяется выполнение следующих нормативных требований:

— вращение рулевого колеса должно происходить без рывков и заеданий во всем диапазоне угла его поворота, неработоспособность усилителя рулевого управления (при его наличии на транспортном средстве) не допускается;- самопроизвольный поворот рулевого колеса от нейтрального положения при неподвижном состоянии транспортного средства с усилителем рулевого управления и работающем двигателе не допускается;

— максимальный поворот рулевого колеса должен ограничиваться только устройствами, предусмотренными конструкцией транспортного средства;

— не предусмотренные конструкцией перемещения деталей и узлов рулевого управления относительно друг друга или опорной поверхности не допускаются; резьбовые соединения должны быть затянуты и зафиксированы способом, предусмотренным изготовителем транспортного средства;

— применение в рулевом механизме и рулевом приводе деталей со следами остаточной деформации, трещинами и другими дефектами не допускается;

Повреждение и отсутствие деталей крепления рулевой колонки и картера рулевого механизма, а также не предусмотренное изготовителем транспортного средства в эксплуатационной документации повышение подвижности деталей рулевого привода относительно друг друга или кузова (рамы) не допускаются.

Не допускается подвижность рулевой колонки в плоскостях, проходящих через ее ось. Рулевая колонка должна надежно соединяться с сопрягаемыми деталями, не иметь повреждений. Устройство фиксации положения рулевой колонки с регулируемым положением рулевого колеса, а также устройство, предотвращающее несанкционированное использование транспортного средства, должны быть в работоспособном состоянии.

Осевое перемещение и качание плоскости рулевого колеса, качание рулевой колонки определяются путем приложения к рулевому колесу знакопеременных сил в направлении оси рулевого вала и в плоскости рулевого колеса перпендикулярно к колонке, а также знакопеременных моментов сил в двух взаимно перпендикулярных плоскостях, проходящих через ось рулевой колонки.

Взаимные перемещения деталей рулевого привода, крепление картера рулевого механизма и рычагов поворотных цапф определяются поворачиванием рулевого колеса относительно нейтрального положения на 40…60° в каждую сторону, а также приложением непосредственно к деталям рулевого привода знакопеременной силы.

ПОРЯДОК ПРОВЕРКИ ТЕХНИЧЕСКОГО СОСТОЯНИЯ ЭЛЕМЕНТОВ РУЛЕВОГО УПРАВЛЕНИЯ.

Перед проверкой технического состояния элементов рулевого управления следует подготовить объект диагностирования:

Установить транспортное средство на горизонтальную ровную площадку с асфальто- или цементобетонной поверхностью.

Установить управляемые колеса в положение, соответствующее прямолинейному движению.

Перевести рычаг переключения передач (селектор автоматической трансмиссии) в нейтральное положение. Под неуправляемые колеса транспортного средства подложить противооткатные упоры.

Определить наличие или отсутствие гидроусилителя на транспортном средстве; при его наличии — определить способ привода насоса и расположение основных его элементов.

Далее в указанном порядке проверяется рулевое управление без вывешивания колес:

Оценить соответствие всех элементов рулевого управления конструкции транспортного средства.

Осмотреть рулевое колесо на предмет отсутствия повреждений. В случае применения оплетки рулевого колеса следует оценить надежность ее крепления.

Оценить надежность крепления рулевого колеса к валу рулевой колонки, для чего приложить знакопеременные ненормируемые усилия к его ободу в направлении вдоль оси рулевой колонки.

Осмотреть элементы рулевой колонки, находящиеся в кабине автомобиля. Проверить работоспособность устройства регулировки положения колонки (при его наличии) и надежность ее фиксации в заданных положениях.

Оценить надежность крепления рулевой колонки, для чего приложить знакопеременные ненормируемые усилия к ободу рулевого колеса в радиальном направлении в двух взаимно перпендикулярных плоскостях.

Проверить работоспособность устройства, предотвращающего несанкционированное использование транспортного средства и воздействующего на рулевое управление, для чего извлечь ключ зажигания из замка и произвести запирание рулевой колонки.

Оценить легкость вращения рулевого колеса во всем диапазоне угла поворота управляемых колес, для чего повернуть рулевое колесо по направлению движения и против направления движения часовой стрелки до упора. При повороте обратить внимание на легкость вращения без рывков и заеданий, а также отсутствие посторонних шумов и стуков. На транспортных средствах с гидроусилителем рулевого управления проверку осуществлять при заведенном двигателе. После окончания проверки вернуть рулевое колесо в положение, соответствующее прямолинейному движению.

На транспортных средствах с гидроусилителем определить отсутствие самопроизвольного поворота рулевого колеса от нейтрального положения при работающем двигателе.

Осмотреть карданные шарниры или эластичные муфты рулевой колонки, оценить надежность их крепления и убедиться в отсутствии не предусмотренных конструкцией люфтов и биений в данных соединениях.

Осмотреть рулевую передачу на предмет отсутствия повреждений и подтеканий смазочного масла и рабочей жидкости (если рулевая передача является элементом системы гидроусилителя). При возможности убедиться в отсутствии люфтов входного и выходного валов или их биения при повороте рулевого колеса. Оценить надежность крепления картера рулевой передачи к раме (кузову) по наличию всех крепежных деталей и отсутствию его подвижности при вращении рулевого колеса в обе стороны.

Осмотреть детали рулевого привода на предмет отсутствия повреждений и деформаций. Оценить надежность крепления деталей друг к другу и к опорным поверхностям. Проверить наличие элементов фиксации резьбовых соединений. Фиксация резьбовых соединений производится, как правило, тремя способами: с помощью самоконтрящихся гаек, шплинта и контровочной проволоки.

Самоконтрящаяся гайка может иметь либо снабженный пластмассовой вставкой, либо деформированный участок резьбы для обеспечения плотного охвата резьбы винта.

Способы фиксации резьбовых соединений рулевого управления

Рис. Способы фиксации резьбовых соединений рулевого управления:

а — самоконтрящейся гайкой; б — шплинтом; в — проволокой

В случае применения шплинтов гайка имеет ряд прорезей в радиальном направлении, а винт — диаметральное отверстие в конечной части резьбы. После затяжки такого соединения шплинт вставляется в отверстие и работает на срез, предотвращая отворачивание гайки.

Контровочной проволокой фиксируются, как правило, винты, завернутые в глухие отверстия. При этом головка винта имеет диаметральные сверления, в которые вводится проволока. Для фиксации она скручивается в замкнутый контур с охватом какого-либо неподвижного элемента основания и слегка натягивается. Натяжение проволоки при повороте головки винта препятствует его самопроизвольному отворачиванию.

 

При наличии системы гидроусилителя проверить уровень рабочей жидкости в бачке насоса при работающем двигателе. Этот уровень контролируется по соответствующим меткам и должен находиться в пределах, предусмотренных изготовителем. Оценить состояние рабочей жидкости по визуальным показателям однородности, отсутствию инородных примесей и вспенивания.

При наличии ременного привода насоса гидроусилителя осмотреть приводной ремень на предмет отсутствия повреждений. Определить натяжение ремня по его прогибу от усилия нажатия большого пальца руки в месте, наиболее удаленном от мест контакта ремня со шкивами. При необходимости измерить натяжение ремня с помощью соответствующего прибора.

Проверить наличие не предусмотренных конструкцией транспортного средства перемещений деталей и узлов рулевого управления относительно друг друга или опорной поверхности. При этом задается знакопеременное перемещение деталей привода путем поворота рулевого колеса относительно нейтрального положения на 40.60° в каждую сторону. Люфт в шарнирах определяется путем приложения тыльной стороны ладони к сопрягаемым поверхностям шарнира. При значительном люфте кроме взаимного перемещения деталей шарнира ладонь воспринимает отчетливый стук, возникающий при достижении сопрягаемыми деталями конечного положения. Наличие такого стука не допускается. В шарнире может наблюдаться небольшое взаимное перемещение сопрягаемых деталей, вызванное демпфирующим действием упругих элементов. Такое перемещение может быть предусмотрено конструкцией транспортного средства и не является неисправностью. В отдельных случаях элементы шарнира рулевой тяги выполняют роль управляющего элемента золотникового клапана системы гидроусилителя. Взаимное перемещение в таком шарнире определяется ходом золотникового клапана в обе стороны. Указанный ход может составлять до 3 мм.

Осмотреть устройства, ограничивающие максимальный поворот управляемых колес. Данные устройства должны быть предусмотрены конструкцией транспортного средства и находиться в работоспособном состоянии. Повернуть управляемые колеса на максимальные углы в обе стороны и убедиться в отсутствии касания шин и дисков колес в этих положениях элементов кузова, шасси, трубопроводов и жгутов электрооборудования.

Осмотреть элементы системы гидроусилителя рулевого управления на предмет отсутствия подтекания рабочей жидкости, не предусмотренного конструкцией контакта трубопроводов с элементами рамы и шасси транспортного средства, надежности крепления трубопроводов. Убедиться в том, что гибкие шланги системы гидроусилителя не имеют трещин и повреждений, достигающих слоя их армирования.

Измерить суммарный люфт в рулевом управлении с помощью люфтомера и сравнить полученные значения с нормативными. Проверку транспортного средства, оборудованного гидроусилителем, проводить при заведенном двигателе. Перед началом проверки убедиться, что управляемые колеса находятся в положении, соответствующем прямолинейному направлению движения транспортного средства. Угол поворота управляемых колес измеряется на удалении не менее 150 мм от центра окружности обода колеса. Крайними положениями рулевого колеса при замере суммарного люфта считаются положения начала поворота управляемых колес. Рулевое колесо поворачивают до положения, соответствующего началу поворота управляемых колес транспортного средства в одну сторону, а затем — в другую до положения, соответствующего началу поворота управляемых колес в сторону, противоположную положению, соответствующему прямолинейному движению. Начало поворота управляемых колес следует фиксировать по каждому раздельно или только по одному из них, дальнему по отношению к рулевой колонке. При этом измеряется угол между указанными крайними положениями рулевого колеса, который и является суммарным люфтом в рулевом управлении.

 

ДОПОЛНИТЕЛЬНЫЕ ПРИБОРЫ В АВТО.

Тем, кто водит машину на пределе и занимается тюнингом автомобиля, необходимы дополнительные показатели работы узлов и агрегатов. Еще более важным является факт, что дополнительные приборы по сравнению со штатными более точны и имеют быстрый отклик и реакцию. Это основная причина установки таких измерителей на заряженные автомобили.

СПОРТИВНЫЙ ТАХОМЕТР.                                                                                               тах3тах

Чаще всего как дополнительный прибор на торпеду можно встретить спортивный тахометр. И именно тахометр, как правило, самый большой из альтернативных измерителей. В то время как обычные диаметры шкал приборов 50–60 мм, тахометры же можно встретить на все 120 мм.

Альтернативные тахометры – это не просто указатель оборотов двигателя. Самые простейшие из них комплектуются дополнительной ограничительной меткой, которую водитель может выставить самостоятельно Более серьезные приборы комплектуются отсечкой по максимальным оборотам со световой индикацией предельных значений и памятью на несколько секунд или даже минут.

Отсечка по максимуму удобна, поскольку, к примеру, с использованием дополнительного светового предупреждения этот тахометр способен в очень доступной форме объявить водителю, что граница предельных оборотов двигателя достигнута и необходимо переключать передачу. А функция записи пригодится для гонщиков. Имея возможность посмотреть обороты двигателя в реальном времени при прохождении маршрута, водитель может затем выявить свои ошибки.

ДОПОЛНИТЕЛЬНЫЕ ИЗМЕРИТЕЛИ ТЕМПЕРАТУРЫ                                                    темпер2темпер

В обычном автомобиле мы пользуемся измерителем температуры охлаждающей жидкости. В тюнинге температурное измерение имеет большую популярность. Температура масла может дать дополнительную информацию об эффективности охлаждения мотора, что крайне важно при интенсивной езде. Вероятно, может понадобиться установка масляного насоса большей производительности, другого поддона картера с более эффективным отводом тепла.

Температура выхлопных газов дает понимание, насколько правильно осуществляются смесеобразование и процесс сгорания. Так, например, слишком высокая их температура (норма в среднем составляет порядка 900 ОС) может говорить о чрезмерном обеднении рабочей смеси. Температура входящего воздуха подскажет причину снижения мощности вследствие плохой наполняемости цилиндров и возможную причину детонации. А температура после интеркулера может сказать, насколько хорошо он справляется со своей задачей.

Некоторые продвинутые фирмы устанавливают специальные измерители температуры масла в трансмиссии. И механические, и автоматические КПП при работе в предельных режимах сильно греются и введение такого прибора – полезное дело. Даже банальная температура забортного воздуха может серьезно выручить водителя, известив, что в данном месте трассы минус и возможен гололед.

ИЗМЕРИТЕЛИ ДАВЛЕНИЯ НАДДУВА ДВИГАТЕЛЯ                                                      надд3надд

Эти приборы призваны показывать величину давления газов или жидкостей. Самый известный измеритель – Boost, Turbo или Turbo boost, короче говоря, измеритель давления наддува. Эти данные необходимы для управления автомобилями, оснащенными наддувом двигателя. Интересны решения, при которых этот измеритель выполняется сдвоенным, т. е. с двумя стрелками разных цветов. Одна показывает давление после нагнетателя, а другая – уже во впускном коллекторе.

Измеряется также давление топлива. При установке форсунок и топливного насоса повышенной производительности измеритель позволяет отслеживать давление в топливной системе, давая представление о корректности ее работы.

Давление масла для высокофорсированных двигателей – жизненно важный показатель. Масло теряет свои свойства, масляный насос перестает справляться, или по ряду причин давление в смазочной системе может снизиться. Это грозит тем, что так называемый масляный клин, т.е. прослойка масла, возникающая между двумя трущимися деталями, может продавиться либо вовсе исчезнуть. Итог весьма плачевен.

ДОПОЛНИТЕЛЬНЫЕ ВОЛЬТМЕТРЫ И АМПЕРТМЕТРЫ                                              вавольт

Отдельного упоминания заслуживают дополнительные электрические измерители. Учитывая, что современные автомобили буквально напичканы различной электроникой, эффективность работы генератора и аккумуляторной батареи крайне важна. Например, измеритель бортового напряжения может сказать о работоспособности аккумуляторной батареи.

Работа и назначение этих измерителей аналогичны общеизвестным устройствам. Вольтметр измеряет колебания напряжения в бортовой сети, а амперметр иллюстрирует процесс зарядки-разрядки аккумуляторной батареи. Из этой пары вольтметр наиболее информативен, но в паре эти приборы дают наиболее полное представление о работе системы электроснабжения автомобиля, позволяя определить практически любую неисправность.

Существует варианты сдвоенных и строенных измерителей. Речь идет о приборах, на одном циферблате которых умещается несколько различных измерителей. Это решение направлено в сторону снижения излишнего заполнения приборной панели автомобиля.

Как проверить термостат системы охлаждения двигателя.

тс2

От исправности термостата зависит корректная работа всей системы охлаждения, ведь именно он выполняет основную работу по регулировке температуры охлаждающей жидкости.

 тс3

Когда двигатель автомобиля прогревается слишком уж резво, при этом практически сразу включается электрический вентилятор, а стрелка датчика температуры охлаждающей жидкости неумолимо приближается к красной зоне, угрожая перегревом двигателя, имеются все основания говорить о нештатной работе системы охлаждения. Очень часто причиной такой неисправности является термостат.

Грешат на термостат водители и в случае, если двигатель медленно прогревается до рабочей температуры, а стрелка датчика температуры стоит как вкопанная в начале шкалы.

  Принцип работы термостата.

Назначение термостата – блокировать доступ охлаждающей жидкости к радиатору до тех пор, пока ее температура не достигнет определенного значения (от 85 до 95 С). Эта задача в большинстве термостатов реализуется при помощи клапана, ведущего к нижнему патрубку радиатора.

 Такой клапан посредством штыря соединен с цилиндром, наполненным техническим воском, температура плавления которого равна 850 С. При нагревании охлаждающей жидкости до указанной температуры до такой же температуры нагревается и воск. Преходя из твердого в жидкое состояние, он значительно расширяется, выталкивая из цилиндра штырь, который открывает клапан.

 В результате охлаждающая жидкость начинает циркулировать по большому кругу системы охлаждения, отдавая большую часть тепла через радиатор и охлаждаясь. По мере снижения температуры двигателя воск в цилиндре термостата уменьшается в объеме, закрывая клапан и запуская циркуляцию охлаждающей жидкости по малому кругу системы охлаждения.

  Проверка работы термостата на автомобиле.

Для проверки термостата двигатель автомобиля необходимо запустить и прогреть до штатной температуры. Через 1-2 минуты после запуска, когда стрелка датчика температуры охлаждающей жидкости еще только начала отклоняться от края шкалы, следует проверить нагрев патрубков, ведущих к радиатору. Нижний патрубок должен оставаться холодным, а верхний – понемногу нагреваться. Умеренно теплым должен быть и патрубок, ведущий к печке салона.

 По мере прогревания двигателя, верхний патрубок радиатора должен становиться горячим, а нижний – оставаться холодным. При достижении температуры срабатывания термостата (наносится на его корпус или указывается в паспорте), нижний патрубок радиатора станет теплым, а затем и горячим. Это – свидетельство срабатывания клапана термостата. В теплую или жаркую погоду вслед за ним должен включиться и электровентилятор. Такой порядок работы термостата является штатным.

 Если же в процессе прогревания двигателя теплыми становятся одновременно оба патрубка радиатора, это свидетельствует о том, что клапан термостата в силу ряда причин постоянно находится в открытом положении, запуская циркуляцию охлаждающей жидкости по большому кругу системы охлаждения.

 Возможен и такой вариант – двигатель прогрелся, включился электрический вентилятор, а нижний патрубок радиатора остается холодным. В этом случае клапан термостата остается постоянно закрытым и не открывается даже при нагревании охлаждающей жидкости, запуская ее циркулировать по малому кругу системы охлаждения.

 Оба последних варианта явно свидетельствуют о том, что термостат неисправен и подлежит замене.

  Проверка работоспособности демонтированного термостата.

Проверить исправность термостата в домашних условиях очень просто. Все, что для этого понадобится – кастрюлька с кипятком. Опустив в кипяток термостат, следует подождать несколько секунд, пока он нагреется. В случае его исправности будет прекрасно видно, как переместился шток и раскрылся клапан термометра.

Точно так же наглядно будет происходить и закрытие клапана в случае охлаждения термостата под струей воды или в кастрюльке с холодной водой.

 Если же в результате домашнего тестирования окажется, что клапан не открывается и/или не закрывается, следовательно, термостат – неисправен.

 Перегрев двигателя может происходить не только из-за неисправности термостата. В некоторых случаях недостаточная циркуляция охлаждающей жидкости может быть  вызвана выходом из строя водяного насоса (помпы) или «завоздушивания» системы охлаждения вследствие неправильно выполненной замены охлаждающей жидкости.

тс1

Пропало сцепление. Что делать.

сцепление2 

 Сцепление является механизмом передачи вращения автомобиля, принципиальным конструктивным элементом коробки, установленным меж коробкой и движком. Оно нужно для плавного подключения, либо отключения соединения мотора с коробкой, также сохранения ее частей от перегрузок. Для предотвращения дефектов сцепления, нужна его верная эксплуатация, о чем мы и побеседуем сейчас. Также поделимся советами, на случай появления противной ситуации: пропало сцепление что делать. Известны некие виды дефектов данного механизма.

✔ Неисправность 1-ая. Из-за перекоса нажимного подшипника, поломки пружин, коробления ведомого диска, замечается свободный ход педали, вследствие неполного выключения сцепления. В данном случае нужно установить новые диски и пружины, вывести воздух из гидропривода, отрегулировать ход педали сцепления.

✔ Неисправность 2-ая. В случае неисправности пружин, наличия изношенных фрикционных накладок ведомого диска, либо их замасливания, замечается недостающий ход педали, и, соответственно, неполное выключение сцепления. При таком виде неисправности механизма следует прочистить, либо стопроцентно поменять, пружины и диски, отрегулировать ход педали сцепления.

✔ Неисправность 3-я. При забияках на рабочих поверхностях дисков, маховика, износа фрикционных накладок ведомого диска, заеданий в механизме, педаль сцепления врубается с некой резкостью. В данном случае необходимо установить новый ведомый диск и изношенные узлы привода, убрать забияки на поверхностях дисков.

✔ Неисправность 4-ая. Если неисправность заключается в утечке тормозной воды в приводе выключения сцепления, нужно установить область подтекания (может быть, в соединительных трубках, или из головного/рабочего цилиндров), установить новые работоспособные узлы, вывести воздух из гидропривода.

Как верно эксплуатировать автомобиль и сцепление, чтоб избежать вышеуказанных дефектов? Сначала, нужно временами инспектировать уровень воды в бачке, который подает ее в гидравлический привод сцепления. При низком уровне воды следует немедленно долить ее в бак: в случае полного расходования воды, педаль сцепления будет врубаться с огромным усилием, или не будет действовать совершенно. Та же самая неисправность замечается при неверной регулировке сцепления: в таком случае педаль также станет полностью никчемным механизмом автомобиля. Бывает, что при большенном усилии, отпуская педаль сцепления вниз, передача, все-же, переключается. В таком случае автомобиль начинает катиться, независимо оттого, что в обозначенное время движок разделен от ведущих колес. При всем этом появляется возможность ДТП, если Вы находитесь, к примеру, у светофора в ожидании зеленоватого сигнала. Этот вид неисправности подвергся рассмотрению нами выше (неисправность 1-ая). Вообщем, в этот момент ведомый диск не должен касаться маховика, но он чуток цепляется, и часть вращающего момента передается на вал коробки, а потом на ведущие колеса автомобиля. Понятно, что при нажатии на педаль сцепления, создается трение ведомого диска о поверхность нажимного диска и маховика. В связи с этим, накладки диска с течением времени изнашиваются, и их необходимо временами подменять новыми. Случается, включив первую передачу, и отпустив педаль сцепления, вы нажимаете на педаль акселератора, и пытаетесь начать движение. Вопреки вашим ожиданиям, автомобиль не трогается с места. Это происходит из-за того, что ведомый диск стопроцентно изношен, он не можетбыть зажат меж маховиком и нажимным диском, возникает момент пробуксовки, и, вследствие этого, диск не подает вращающий момент от мотора к коробки. Данное явление названо нами, как неисправность 2-ая. Чтоб избежать вышеперечисленной неисправности, нужно: прислушиваться к звукам в собственном автомобиле, смотреть за правильной работой всех частей во время поездок на разной скорости и в различных ситуациях (на ровненькой трассе, в городке, в пробках). При первых признаках пробуксовки ведомого диска при включенной четвертой передаче, потом третей, и 2-ой, следует направить внимание на его состояние. Спецы рекомендуют подменять этот расходный материал приблизительно после 80000 км пробега. Если же вы не являетесь опытным водителем, нередко держите ногу на педали сцепления, подмена диска может быть произведена ранее обозначенного километража. Чтоб найти износ ведомого диска, можно жать на педаль тормоза, двигаясь на четвертой передаче со скоростью приблизительно 40 км/час. Если автомобиль двигается с не меняющейся скоростью при увеличивающихся оборотах, то пришло время поменять ведомый диск новым. В этом случае, если вы услышали тихий шелестящий звук при незадействованной педали сцепления, а нажав на нее, вы увидели, что звук пропал, следует произвести подмену выжимного подшипника.

Сцепление

ШРУС.

ШРУС

Приводной вал и полуоси, являются весьма ответственными узлами в трансмиссии автомобиля. Приводные валы сегодня устанавливаются на переднее-, заднее-  и полноприводные автомобили. Полуоси изготавливаются из прочного сплава, так как при эксплуатации они испытывают огромные нагрузки в виде скручивания и сдвига.

ШРУС2

Основным предназначением приводного вала автомобиля является передача крутящего момента от КПП и дифференциала на ведущие колеса. Простейший приводной вал состоит из следующих компонентов:

—  ось;

—  внутренний ШРУС;

—  наружный ШРУС.

 

В автомобиле с передним приводом внутренний ШРУС закреплен в КПП и соединен с внешним шарниром на колесе посредством жесткой полуоси.

 

ШРУСы соединяются и фиксируются на полуоси посредством стопорных колец, а передача вращения обеспечивается за счет шлицевого соединения шарниров и полуоси. ШРУСы позволяют ведущим колесам перемещаться в вертикальной плоскости, а также менять траекторию движения автомобиля. При исправных приводных валах автомобиль движется плавно и без рывков в любых положениях шарниров равных угловых скоростей.

 

В заднеприводных автомобилях с классическим задним мостом, для передачи крутящего момента на колеса также применяются полуоси, но несколько иной конструкции. В заднем мосту устанавливаются полуразгруженные и разгруженные полуоси. Разгруженные полуоси более распространены, так как в силу более совершенной конструкции испытывают значительно меньше нагрузок и служат гораздо дольше, нежели полуразгруженные.

 

Полуразгруженная полуось внутренней стороной закреплена в полуосевой шестерне дифференциала, а внешняя сторона оканчивается ступицей колеса, закрепленной в шариковом подшипнике. Разгруженная полуось имеет аналогичную конструкцию, однако ступица колеса закреплена уже в двух роликовых подшипниках. Данное отличие в конструкции позволяет освободить полуось от воздействия на нее всяческих нагрузок, кроме нагрузки от передачи крутящего момента.

 

Также следует отметить, что в автомобилях с передним расположением силового агрегата и задним приводом передача крутящего момента от КПП на задний мост может также осуществляться посредством приводного вала. Такой приводной вал имеет аналогичную конструкцию с полуосью, передающей крутящий момент непосредственно на ведущее колесо. Современные задне- и полноприводные автомобили оборудованы именно приводными валами на основе ШРУСов, взамен устаревшим карданным передачам.

 

Мощность и объём двигателя.

Зачем выбирать мотор большого объема и почему на американских авто устанавливается большой объем двигателя при не всегда впечатляющей мощности?   Ведь некоторые японские/европейские авто выжимают 300 л.с. из 2 или 3 литров двигателя, а не из 5 литров (как американские) и они же при одинаковом его объеме с американскими авто выдают больше мощности в л.с., например, Мерседес объемом в 5 литров выдает 330 л/с, а Джип Гранд Чероки при том же объеме выдает всего-навсего 220

Откинув эмоции и не переходя на личности, попробую рассказать, что такое американский двигатель вообще и он же большого объема в частности.

Дело в том, что люди, которые пытаются сравнивают классические американские двигатели с европейскими или японскими по мощности — являются абсолютными невеждами в автомобильной области вообще, и в области двигателестроения в частности.

Классический большеобъёмный американский мотор и европейские/японские малолитражные моторы имеют кардинальные отличия.

Когда то давно, в 50-70 годах, американцы были беззаботными и веселыми ребятами, которые с удовольствием ездили на больших, и на тот момент очень совершенных автомобилях.

В то время надпись Made in USA на автомобиле означала престиж и качество. Да и по другому быть не могло, ибо уже тогда американцы делали отличных машин едва ли не больше, чем во всем остальном мире вместе взятом.

 

Японский автопром тогда ходил под стол пешком и ходил туда в таком положении где-то до середины 80-х годов. В европе тогда автопром тоже не блистал яркостью и разнообразием.

Кстати, такой любимый нынешнеми ценителями MB SL Gullwing, имел в подвеске не шаровые опоры, а шкворни, в то время как в америке в это же время даже на семейные седаны ставились шаровые опоры. Это так, для сведения, чтобы был ясен уровень Америки и Европы с Японией на тот момент.

Тогда, каждому американцу было ясно как день, что хороший автомобиль — это большой американский автомобиль. Чем больше и просторнее — тем лучше. И для обеспечения неплохой динамики почти 3-х тонным машинкам нужен был мощный двигатель.

И американцы, не долго думая, рассудили просто. Чем больше объем — тем больше мощность. Отсюда и пошли 4, 5, 7 и 8 литровые двигатели. Тогда, в то время они без особого напряга выдавали 300-400 лошадей и могли разгонять 3-х тонного 6-ти метрового сверкающего хромом красавца до сотни секунд за 9-10. Машинка при этом могла кушать 30-40 литров бензина, однако, такой расход в то время никого особенно не пугал, ибо бензина было много, он был дешевый а доходы даже простых американцев росли вместе с подъемом экономики Америки.

В европе же, от банальной послевоенной бедности и природной прижимистости европейцев такие мощные двигатели никак не могли появится, и европа пошла своим путем. Они начали делать маленькие двигатели и ставить их в свои плешивые маленькие автомобильчики типа Ситроен 2CV. А уж потом, по мере развития технологий стали доводить эти маленькие моторчики и поднимать их мощность с целью научить свои евродрандулеты ездить быстрее.

 

Но пришел топливный кризис 70-х и американцы задумались о том, что не все в этом мире так просто. К тому же в штатах, вовсю набирались сил т.н. зеленые, борющиеся за чистый воздух и прочие высокие материи. Их крайне раздражали прожорливые и достаточно не экологичные моторы большого объема, и в результате под лозунгом борьбы за экологию и экономию бензина, произошло ключевое событие: АМЕРИКАНСКИЕ ДВИГАТЕЛИ УРЕЗАЛИ ПО МОЩНОСТИ ОСТАВИВ ПРИ ЭТОМ ИХ ОБЪЕМ.

И в результате к примеру Бьюик Ривера 74 года выпуска с двигателем объемом 7.5 литров имел мощность 245 лошадей при степени сжатия 8.5:1. Хотя снять с этого двигателя все 400 лошадей можно было бы путем нескольких простых операций. Но НИЗЗЯ. Зеленые не разрешали.

НО,как примерно гласит американская пословица — «Если тебе попался лимон, не расстраивайся — сделай из него лимонад»,- так и в урезании мощности двигателей вскоре нашли своеобразный плюс.

Во-первых, большие двигатели с низкой мощностью обладали гигантским крутящим моментом на низких оборотах, и как следствие во первых, автомобиль обладал хорошей динамикой разгона на любых скоростях.

Во-вторых, из за того что двигатель был низкооборотистым (максимум 4000-4500 об/мин), автомобиль обладал НИЗКИМ УРОВНЕМ ШУМА двигателя при движении с постоянной скоростью. Ну а так как хорошая машина для американцев — это комфортная машина, то такое положение вещей очень даже всех устроило.

И с тех пор, американцы поступили мудро, сохранив традицию оснащать свои автомобили большеобъемными, низкооборотистыми моментными двигателями. Именно поэтому двигатель, например Джип Гранд Чероки при объеме в 5.2 литра имеет мощность «лишь» 220 лошадей, но зато при этом обладает далеко недетским крутящим моментом в 406 Nm уже при 2800 оборотах, что делает его очень серьезным противником на светофорных гонках даже для 740 БМВ.

А все дело в том, что БМВ обладая большей мощностью при меньшем объеме, имеет пик крутящего момента выше чем двигатель гранда. И так в любом европейском или японском двигателе.

ЧЕМ ВЫШЕ МОЩНОСТЬ ПРИ МЕНЬШЕМ ОБЪЕМЕ, ТЕМ БЫСТРЕЕ ДОЛЖЕН ВРАЩАТЬСЯ ДВИГАТЕЛЬ. И НА ОБОРОТ!

На практике это означает, что для того чтобы какой нибудь узкоглазый автомобиль с 2 литровым 200 лошадным двигателем разгонялся так как Гранд, двигатель этого узкоглазого должен визжать как электродрель где нибудь на 8000 оборотов, в то время как гранд будет разгонятся точно так же, а то и быстрее расслабленно бурча на 3000 оборотах.

Это немного утрированно, но смысл именно такой.

  1. На разгонную динамику автомобиля влияет не максимальная мощность двигателя, а его крутящий момент, измеряемый в Ньютон-метрах. Чем ниже по оборотам двигателя находится пик крутящего момента, тем быстрее машина будет разгонятся с низкого старта. Именно в этом сильны американские большеобъемные двигатели.
  1. Максимальная мощность двигателя влияет на максимальную скорость автомобиля, а не на динамику его разгона.
  1. Классический большеобъемный американский двигатель отличается от европейского и японского прежде всего тем, что обладает низкой литровой мощностью но при этом большим крутящим моментом на низких оборотах (2500-3000), низкой степенью сжатия и, как следствие, БОЛЬШОЙ ДОЛГОВЕЧНОСТЬЮ.
  1. Для особо непонятливых — еще проще: Американский двигатель крутится медленно, а разгоняет машину офигенно быстро. В этом его ОСНОВНОЕ отличие от европейских и японских малообъемных агрегатов.

Рисунок протектора.

 

Рисунок протектора образуется определенным расположением его элементов относительно друг друга и направления вращения шины. На любом типе шины может быть использован ненаправленный, направленный или асимметричный рисунок протектора, что оказывает существенное влияние на ее эксплуатационные характеристики. 1 — ненаправленная шина устанавливается на автомобиль произвольно; 2 — направленная шина устанавливается на автомобиль по направлению стрелки на ее боковине; 3 — асимметричная шина устанавливается на автомобиль в соответствии с надписью на ее боковине: «Outside» — наружняя сторона; «Inside» — внутренняя сторона Ненаправленный наиболее универсальный рисунок, поэтому часть шин выпускается именно с ним. Он допускает пропроизвольную установку колеса и любое направление вращения шины, но уступает другим рисункам по способности интенсивно отводить воду из пятна контакта с дорогой. Направленный рисунок отличается тем, что его элементы (упрощенно) расходятся «елочкой», и это требует определенного направления вращения колеса. Такое построение элементов позволяет более эффективно, чем при ненаправленном рисунке, отводить из пятна контакта воду, жидкую грязь и понизить уровень шума, создаваемого шиной при движении. На боковинах шин с этим рисункам обязательно указано направление вращения. Определенное неудобство связано с тем, что «запаска» совпадает по направлению вращения только с колесами одной стороны автомобиля, а на другой стороне она может использоваться только для поездки с небольшой скоростью до ближайшего шиномонтажа. Асимметричный рисунок — один из способов реализовать разные свойства в одной шине, например наружную сторону протектора выполняют с рисунком, обеспечивающим наилучшее сцепление с сухой дорогой, а внутреннюю – с мокрой. Он характерен различным расположением канавок и шашек с одной и другой стороны от середины протектора. Шины с асимметричным рисунком чаще всего бывают ненаправленными,а изредка – направленными; в этом случае требуются разные шины для левых и правых колес автомобиля. На боковинах шин с асимметричным рисунком обязательно указано, какая сторона должна быть направлена внутрь, а какая наружу. Если комплект шин с асимметричным ненаправленным рисунком, то запасное колесо подходит на любую сторону автомобиля.

Система зажигания.

Основное назначение системы зажигания автомобиля является подача искрового разряда на свечи зажигания в определённый такт работы бензинового двигателя. Для дизельных двигателей под зажиганием понимают момент впрыска топлива в такт сжатия. В некоторых моделях автомобилей система зажигания, а именно ее импульсы подаются на блок управления погружным топливным насосом.

сз

Систему зажигания, по мере своего развития, можно разделить на три типа:             —  контактная система зажигания, импульсы у которой создаются во время работы контактов на разрыв;                                                                                                             — бесконтактная система зажигания, управляющие импульсы создаются электронным транзисторным управляющим устройством – коммутатором, (хотя правильно его назвать генератором импульсов);                                                               — микропроцессорная система зажигания — это электронное устройство, которое управляет моментом зажигания, а также другими системами автомобиля.                        Для двухтактных двигателей, без внешнего источника питания используются системы зажигания типа магнето, основанная на принципе создания ЭДС при вращении постоянного магнита в катушке зажигания по заднему фронту импульса.

сз1сз3сз2

 Устройство системы зажигания.

Все вышеперечисленные виды систем зажигания похожи между собой, отличаются только методом создания управляющего импульса. Так в систему зажигания входят:

1. Источник питания для системы зажигания, это аккумуляторная батарея (в момент запуска двигателя), и генератор (во время работы двигателя).

2. Выключатель зажигания – это механическое или электрическое контактное устройство подачи напряжения на систему зажигания, или по-другому – замок зажигания. Как правило, выполняет две функции: подачи напряжения на бортовую сеть и систему зажигания, подачи напряжения на втягивающее реле стартера автомобиля.

3. Накопитель энергии – узел предназначенный для накопления, преобразования энергии достаточной для возникновения электрического разряда между электродами свечи зажигания. Условно накопители энергии можно разделить на индуктивный и емкостный.

Простейший индуктивный накопитель – это катушка зажигания, которая представляет собой автотрансформатор, первичная обмотка у него подключается к плюсовому полюсу и через устройство разрыва к минусовому. Во время работы устройства разрыва, например кулачков зажигания, в первичной обмотке возникает напряжение самоиндукции. Во вторичной обмотке образуется повышенное напряжение, достаточное для пробоя воздушного зазора свечи.

Емкостный накопитель представляет собой емкость, которая заряжается повышенным напряжением и в нужный момент отдает свою энергию на свечу зажигания

4. Свечи зажигания, представляют собой устройство с двумя электродами находящимися друг от друга на расстоянии 0,15-0,25 мм. Представляет собой фарфоровый изолятор, насаженный на металлическую резьбу, в центре находится центральный проводник, который служит электродом, вторым электродом является резьба.

5. Система распределения зажигания предназначена для подачи в нужный момент энергии от накопителя к свечам зажигания. В состав системы входят распределитель, и(или) коммутатор, блок управления системой зажигания.

— Распределитель зажигания (трамблёр) – устройство распределения высокого напряжения по проводам, ведущим к свечам цилиндров. Обычно в распределителе собран и кулачковый механизм. Распределение зажигания может быть механическим и статическим. Механический распределитель представляет собой вал, который приводится в действие от двигателя и при помощи «бегунка» распределяет напряжение по высоковольтным проводам. Статическое распределение зажигания подразумевает под собой отсутствие вращающихся деталей. При таком варианте катушка зажигания присоединятся непосредственно к свече, а управление происходит от блока управления зажиганием. Если, например, двигатель автомобиля имеет четыре цилиндра, то и катушек будет четыре. Высоковольтные провода в данной системе отсутствуют.

— Коммутатор – электронное устройство для генерации импульсов управления катушкой зажигания, включается в цепь питания первичной обмотки катушки и по сигналу от блока управления разрывает питание, в результате чего возникает напряжение самоиндукции.

— Блок управления системой зажигания – микропроцессорное устройство, которое определяет момент подачи импульса в катушку зажигания, в зависимости от данных датчиков положения коленвала, лямбда-зондов, температурных датчиков и датчика положения распредвала.

6. Высоковольтный провод — это одножильный провод с повышенной изоляцией. Внутренний проводник может иметь форму спирали, для исключения помех в радиодиапазоне.

 

 Принцип работы системы зажигания.

Рассмотрим принцип действия классической системы зажигания. При вращении вала привода трамблёра в действие приводятся кулачки, которые «разрывают» подаваемые на первичную обмотку автотрансформатора (бобину) 12 вольт. При пропадании напряжения на трансформаторе, в обмотке появляется ЭДС самоиндукции, соответственно на вторичной обмотке возникает напряжение порядка 30000 вольт. Высокое напряжение подается в распределитель зажигания (бегунок), который вращаясь попеременно подает напряжение на свечи в зависимости от такта работы двигателя внутреннего сгорания. Высокого напряжения достаточно для пробоя искровым разрядом воздушного зазора между электродами свечи зажигания.

Опережение зажигания нужно для более полного сгорания топливной смеси. Из-за того, что топливо сгорает не сразу, поджечь его необходимо немного раньше, до прихода в ВМТ. Момент подачи искры должен быть точно отрегулирован, потому что в ином случае (раннее или позднее зажигание) двигатель потеряет свою мощность, возможна повышенная детонация.